
Adam Ó Conghaile, University of Cambridge

Game Comonads
A new language for complexity theory

Talk Outline

• The two most important problems in Complexity Theory

• Game Comonads: a new framework for thinking about these problems

• Oracles, Quantifiers and how my work improves game comonads

A quick introduction to my field

The Two Most Important Problems

𝒳 → 𝒟? 𝒢 ≅ ℋ?

Constraint Satisfaction Problem Graph Isomorphism Problem

Either or

(Bulatov & Zhuk, 2018)

P NP-Complete

SAT-solvers, Sudoku

querying databases

Verification, code optimisation,

pattern recognition

Not known to be or

Suspected “intermediate problem”

P NP-Complete

-local consistency algorithmk -Weisfeiler-Lehman algorithmk

Uses

Complexity

Approximations

P-Time

Is there a homomorphism? Is there an isomorphism?

My work

Logic is the key to understanding these algorithms

-local consistency algorithmk

-Weisfeiler-Lehman algorithmk

𝒳 →k 𝒟 ⟺ 𝒳 ⇛∃+ℒk 𝒟?

𝒢 ≅k ℋ ⟺ 𝒢 ≡ℒk(♯) ℋ

Kolaitis & Vardi, 1992

Immerman & Lander, 1990

Games are the key to understanding logic

Spoiler Duplicator

Ç
1

Spoiler wants to convince Duplicator that 𝒳 ↛ 𝒟

Duplicator wants to convince Spoiler that 𝒳 → 𝒟

2
… k

Ç
1

2
… k

 ∃Pebk(𝒳, 𝒟)

…but they have limited access to and 𝒳 𝒟

𝒳 𝒟

Theorem (Kolaitis & Vardi, 1992)

“Duplicator” has a winning strategy for if and only if ∃Pebk(𝒳, 𝒟) 𝒳 ⇛∃+ℒk 𝒟

𝒳 →k 𝒟 ⟺ 𝒳 ⇛∃+ℒk 𝒟?

Games are the key to understanding logic

Theorem (Hella, 1996)

Duplicator has a winning strategy for if and only if Bijk(𝒜, ℬ) 𝒜 ≡ℒk(♯) ℬ

Spoiler Duplicator

Ç
1

Spoiler wants to convince Duplicator that 𝒜 ≇ ℬ

Duplicator wants to convince Spoiler that 𝒜 ≇ ℬ

2
… k

Ç
1

2
… k

 Bijk(𝒜, ℬ)

…they have limited access to and

and Duplicator has to give a one-to-one map 

from A to B containing her moves

𝒳 𝒟

𝒜 ℬ

𝒢 ≅k ℋ ⟺ 𝒢 ≡ℒk(♯) ℋ

Game Comonads are the key to understanding these games

𝒳 →k 𝒟 ⟺ 𝒳 ⇛∃+ℒk 𝒟 ⟺ Duplicator wins ∃Pebk(𝒳, 𝒟) 𝒢 ≅k ℋ ⟺ 𝒢 ≡ℒk(♯) ℋ ⟺ Duplicator wins Bijk(𝒢, ℋ)

Research on Constraint Satisfaction Research on Graph Isomorphism

Missing Link?

 is a special type of functor which takes a structure and returns a new structure such that: ℙk 𝒜 ℙk𝒜

There is a homomorphism ℙk𝒜 → ℬ ⟺ Duplicator wins ∃Pebk(𝒜, ℬ)

There is an isomorphism ℙk𝒜 ≅ ℙkℬ ⟺ Duplicator wins Bijk(𝒜, ℬ)

There is a “coalgebra” 𝒜 → ℙk𝒜 ⟺ 𝒜 has a "tree decomposition" of width k

Other comonads have since been discovered for other pairs of logic games modelling other algorithms

“Pebbling” Comonad (Abramsky, Dawar & Wang, 2018)ℙk

Limitations of the game comonads

•Lack of computational power: 
They only capture and , which are not the cutting edge for approximating CSP
and GI

•Only simple “resources”: 

The in controls the number of variables (other variants control depth of quantification) but
do not control of quantifiers.
•Ad-hoc constructions: 

Each new game comonad had to be “engineered” from first principles, no “shortcuts”

∃+ℒk ℒk(♯)

k ℙk

My work on game comonads
and quantifiers

Need more power? Consult an oracle!

Computing…
PAUSE

Computing…

Asks v. hard yes/no question

Sends correct answer
immediately

Output

Input

Oracle computation exists everywhere in computer science, cryptography and complexity theory (and Ancient Greece!)

In the world of logic, oracles are added using “generalised quantifiers” (due to Per Lindstrom)

Some work had already been done (by Hella) giving a two-way game for logics extended by these oracles.

Duplicator wins Bijkn(𝒜, ℬ) ⟺ 𝒜 ≡ℒk(Qn) ℬ

Improving our understanding of these oracles

Theorem 15 (Ó C. & Dawar, 2021)

For a game from the left-hand diagram, Duplicator wins if and only if where
is the corresponding logic from the right-hand diagram

𝒢 𝒢(𝒜, ℬ) 𝒜 ⇛ℒ𝒢 ℬ ℒ𝒢

All “n-ary” quantifiers

(including for n = 1)♯

“n-ary” hom-closed quantifiers

(including for n = 1)∃

Constructing a new comonad from an old one
Pebbling Comonad New “oracle” Comonad

ℙk𝒜 → ℬ ⟺ ∃Pebk(𝒜, ℬ) ⟺ 𝒜 ⇛∃+ℒk ℬ

 ℙk𝒜 ≅ ℙkℬ ⟺ Bijk(𝒜, ℬ) ⟺ 𝒜 ≡ℒk(♯) ℬ

+Funk
n(𝒜, ℬ) ⟺ 𝒜 ⇛+ℒk(Qh

n) ℬ

 Bijkn(𝒜, ℬ) ⟺ 𝒜 ≡ℒk(Qn) ℬ

Lemma 20 (Ó C. & Dawar, 2021)

Duplicator has a winning strategy for if and only if she has an “ -consistent” winning
strategy for
+Funk

n(𝒜, ℬ) n
∃Pebk(𝒜, ℬ)

Then defined a relation on any such that ≈n ℙk𝒜
ℙk𝒜/ ≈n → ℬ ⟺ Duplicator wins ∃Pebk(𝒜, ℬ) n-consistently

𝔾n,k𝒜 := ℙk𝒜/ ≈n

⟺ 𝔾n,k𝒜 → ℬ

⟺ 𝔾n,k𝒜 ≅ 𝔾n,kℬ

Limitations of the game comonads

•Lack of computational power: 
They only capture and , which are not the cutting edge for approximating CSP
and GI

•Only simple “resources”: 

The in controls the number of variables (other variants control depth of quantification) but
not control of quantifiers.
•Ad-hoc constructions: 

Each new game comonad had to be “engineered” from first principles, no “shortcuts”

∃+ℒk ℒk(♯)

k ℙk

Improvements to

 allows us to reason about oracle power in comonads!𝔾n,k

 controls multiple different classes of quantifier as well as variables𝔾n,k

 was built from opening up the possibility of new constructions𝔾n,k ℙk

Full details in my latest publication:
Ó Conghaile, Dawar

Game comonads & generalised quantifiers
Proceedings of CSL 2021

Future Work
• Incorporate new SoA approximations

• Implement game comonads in Haskell

• More connections Logic <-> Algorithms

