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Talk Outline

• The two most important problems in Complexity Theory


• Game Comonads: a new framework for thinking about these problems 


• Oracles, Quantifiers and how my work improves game comonads



A quick introduction to my field



The Two Most Important Problems

𝒳 → 𝒟? 𝒢 ≅ ℋ?

Constraint Satisfaction Problem Graph Isomorphism Problem

Either  or 

(Bulatov & Zhuk, 2018)

P NP-Complete

SAT-solvers, Sudoku 

querying databases  

Verification, code optimisation, 

pattern recognition  

Not known to be  or 

Suspected “intermediate problem”

P NP-Complete

-local consistency algorithmk -Weisfeiler-Lehman algorithmk

Uses

Complexity

 

Approximations

P-Time

Is there a homomorphism? Is there an isomorphism?

My work



Logic is the key to understanding these algorithms

-local consistency algorithmk

-Weisfeiler-Lehman algorithmk

𝒳 →k 𝒟 ⟺ 𝒳 ⇛∃+ℒk 𝒟?

𝒢 ≅k ℋ ⟺ 𝒢 ≡ℒk(♯) ℋ

Kolaitis & Vardi, 1992

Immerman & Lander, 1990



Games are the key to understanding logic

Spoiler Duplicator

Ç
1

Spoiler wants to convince Duplicator that  𝒳 ↛ 𝒟

Duplicator wants to convince Spoiler that  𝒳 → 𝒟

2
… k

Ç
1

2
… k

   ∃Pebk(𝒳, 𝒟)

…but they have limited access to  and 𝒳 𝒟

𝒳 𝒟

Theorem (Kolaitis & Vardi, 1992)

“Duplicator” has a winning strategy for  if and only if   ∃Pebk(𝒳, 𝒟) 𝒳 ⇛∃+ℒk 𝒟

𝒳 →k 𝒟 ⟺ 𝒳 ⇛∃+ℒk 𝒟?



Games are the key to understanding logic

Theorem (Hella, 1996)

Duplicator has a winning strategy for  if and only if   Bijk(𝒜, ℬ) 𝒜 ≡ℒk(♯) ℬ

Spoiler Duplicator

Ç
1

Spoiler wants to convince Duplicator that  𝒜 ≇ ℬ

Duplicator wants to convince Spoiler that  𝒜 ≇ ℬ

2
… k

Ç
1

2
… k

   Bijk(𝒜, ℬ)

…they have limited access to  and 

and Duplicator has to give a one-to-one map 

from A to B containing her moves

𝒳 𝒟

𝒜 ℬ

𝒢 ≅k ℋ ⟺ 𝒢 ≡ℒk(♯) ℋ



Game Comonads are the key to understanding these games

𝒳 →k 𝒟 ⟺ 𝒳 ⇛∃+ℒk 𝒟 ⟺ Duplicator wins ∃Pebk(𝒳, 𝒟) 𝒢 ≅k ℋ ⟺ 𝒢 ≡ℒk(♯) ℋ ⟺ Duplicator wins Bijk(𝒢, ℋ)

Research on Constraint Satisfaction Research on Graph Isomorphism

Missing Link?

 is a special type of functor which takes a structure  and returns a new structure  such that: ℙk 𝒜 ℙk𝒜

There is a homomorphism ℙk𝒜 → ℬ ⟺ Duplicator wins ∃Pebk(𝒜, ℬ)

There is an isomorphism ℙk𝒜 ≅ ℙkℬ ⟺ Duplicator wins Bijk(𝒜, ℬ)

There is a “coalgebra” 𝒜 → ℙk𝒜 ⟺ 𝒜 has a "tree decomposition" of width k

Other comonads have since been discovered for other pairs of logic games modelling other algorithms

“Pebbling” Comonad  (Abramsky, Dawar & Wang, 2018)ℙk



Limitations of the game comonads

•Lack of computational power: 
They only capture  and , which are not the cutting edge for approximating CSP 
and GI

•Only simple “resources”: 

The  in  controls the number of variables (other variants control depth of quantification) but 
do not control of quantifiers. 
•Ad-hoc constructions: 

Each new game comonad had to be “engineered” from first principles, no “shortcuts”

∃+ℒk ℒk(♯)

k ℙk



My work on game comonads 
and quantifiers



Need more power? Consult an oracle!

Computing…
PAUSE

Computing…

Asks v. hard yes/no question

Sends correct answer 
immediately

Output

Input

Oracle computation exists everywhere in computer science, cryptography and complexity theory (and Ancient Greece!)

In the world of logic, oracles are added using “generalised quantifiers” (due to Per Lindstrom)

Some work had already been done (by Hella) giving a two-way game for logics extended by these oracles.

Duplicator wins Bijkn(𝒜, ℬ) ⟺ 𝒜 ≡ℒk(Qn) ℬ



Improving our understanding of these oracles

Theorem 15 (Ó C. & Dawar, 2021)

For a game  from the left-hand diagram, Duplicator wins  if and only if  where  
is the corresponding logic from the right-hand diagram 

𝒢 𝒢(𝒜, ℬ) 𝒜 ⇛ℒ𝒢 ℬ ℒ𝒢

All “n-ary” quantifiers

(including  for n = 1)♯

“n-ary” hom-closed quantifiers

(including  for n = 1)∃



Constructing a new comonad from an old one
Pebbling Comonad New “oracle” Comonad

ℙk𝒜 → ℬ ⟺ ∃Pebk(𝒜, ℬ) ⟺ 𝒜 ⇛∃+ℒk ℬ

   ℙk𝒜 ≅ ℙkℬ ⟺ Bijk(𝒜, ℬ) ⟺ 𝒜 ≡ℒk(♯) ℬ

+Funk
n(𝒜, ℬ) ⟺ 𝒜 ⇛+ℒk(Qh

n) ℬ

   Bijkn(𝒜, ℬ) ⟺ 𝒜 ≡ℒk(Qn) ℬ

Lemma 20 (Ó C. & Dawar, 2021)

Duplicator has a winning strategy for  if and only if she has an “ -consistent” winning 
strategy for 
+Funk

n(𝒜, ℬ) n
∃Pebk(𝒜, ℬ)

Then defined  a relation on any  such that ≈n ℙk𝒜
ℙk𝒜/ ≈n → ℬ ⟺ Duplicator wins ∃Pebk(𝒜, ℬ) n-consistently

𝔾n,k𝒜 := ℙk𝒜/ ≈n

⟺ 𝔾n,k𝒜 → ℬ

⟺ 𝔾n,k𝒜 ≅ 𝔾n,kℬ



Limitations of the game comonads

•Lack of computational power: 
They only capture  and , which are not the cutting edge for approximating CSP 
and GI

•Only simple “resources”: 

The  in  controls the number of variables (other variants control depth of quantification) but 
not control of quantifiers. 
•Ad-hoc constructions: 

Each new game comonad had to be “engineered” from first principles, no “shortcuts”


∃+ℒk ℒk(♯)

k ℙk

Improvements to 

 allows us to reason about oracle power in comonads!𝔾n,k

 controls multiple different classes of quantifier as well as variables𝔾n,k

 was built from  opening up the possibility of new constructions𝔾n,k ℙk

Full details in my latest publication:
Ó Conghaile, Dawar  

Game comonads & generalised quantifiers  
Proceedings of CSL 2021  

Future Work
• Incorporate new SoA approximations

• Implement game comonads in Haskell

• More connections Logic <-> Algorithms


