Partition games, compositionally

Towards game comonads for linear algebraic logics

BCTCS, March 2021, (virtual) Liverpool

Adam Ó Conghaile, Department of Computer Science, University Cambridge

Talk outline

- Games in logic, finite model theory and descriptive complexity
- Game comonads so far: a powerful categorical semantics for logic games
- Partition games \& their relation to linear algebraic logic
- Obstacles, progress and open questions in relating linear algebra and game comonads

Games in Descriptive Complexity \& Finite Model Theory A crash course

Descriptive Complexity

A quick tour

- (Fagin's Theorem, 1973) A class of finite structures is decidable in NP if and only if it is expressible in $\exists \mathrm{SO}$
- (Gurevich's Conjecture, 1988) There is no equivalent logic for P
- Candidate logics for P include rank logic, and choiceless polynomial time.

The hunt for a logic for PTIME

- FO can't even express parity or connectedness.
- FPC captures PTIME on totally ordered finites structures. (Immerman, Vardi)
- FPC does not capture P on all structures (Cai, Furer Immerman, 1992)
- Other logics have been suggested which extend the power of FPC.

Spoiler-Duplicator games used to prove upper bounds

- Expressiveness upper bounds: $\left\{\mathscr{A}_{k}\right\}$ all with $P,\left\{\mathscr{B}_{k}\right\}$ all lacking P Show that $\mathscr{A}_{k} \equiv_{\mathscr{L}_{k}} \mathscr{B}_{k}$ then P inexpressible in $\mathscr{L}=\cup \mathscr{L}_{k}$

Duplicator winning implies that

$$
\mathscr{A} \equiv_{\mathscr{L}_{k}} \mathscr{B}
$$

Harder game for Duplicator means more expressive \mathscr{L}_{k}

One-way variants also important

- Expressiveness upper bounds: $\left\{\mathscr{A}_{k}\right\}$ all with $P,\left\{\mathscr{B}_{k}\right\}$ all lacking P Show that $\mathscr{A}_{k} \equiv_{\mathscr{L}_{k}} \mathscr{B}_{k}$ then P inexpressible in $\mathscr{L}=\cup \mathscr{L}_{k}$

- Success of algorithms:

For one-way k-pebble game, Duplicator wins iff k-local consistency algorithm says CSP $\mathscr{A} \rightarrow \mathscr{B}$ has solution

Duplicator winning implies that

$$
\mathscr{A} \Rightarrow \mathscr{L}_{k}^{\prime} \mathscr{B}
$$

Harder game for Duplicator means more expressive \mathscr{L}_{k}^{\prime}

... and many other types of games exist!

- Expressiveness upper bounds:
$\left\{\mathscr{A}_{k}\right\}$ all with $P,\left\{\mathscr{B}_{k}\right\}$ all lacking P
Show that $\mathscr{A}_{k} \equiv_{\mathscr{L}_{k}} \mathscr{B}_{k}$ then P inexpressible in $\mathscr{L}=\cup \mathscr{L}_{k}$
- Success of algorithms:

For one-way k-pebble game, Duplicator wins iff k-local consistency algorithm says CSP
$\mathscr{A} \rightarrow \mathscr{B}$ has solution

- Proving a structure decomposes:

Game played on one structure between a "robber" and k "cops" is won by cops when \mathscr{A} has treewidth $<k$

Robber uses complexity of \mathscr{A} to evade cops

Cops winning implies that \mathscr{A} has a decomposition

Harder game for cops means simpler decomposition of \mathscr{A}

Game comonads: the story so far

History of game comonads

- Abramsky, Dawar \& Wang, 2017 $\mathbb{P}_{k} \mathscr{A}$ construction which put a relational structure on the tree of histories of Spoiler moves in $\exists \mathbf{P e b}^{k}(\mathscr{A},-)$
- This turned out to be a comonad!

$$
\mathbb{P}_{k} \mathscr{A} \rightarrow \mathscr{B}
$$

Duplicator wins $\exists \operatorname{Peb}^{k}(\mathscr{A}, \mathscr{B})$

- Its coalgebras correspond to winning strategies for cops in $\mathbf{C R}^{k}(\mathscr{A})$

Developments in game comonads

Reference	Comonad	Related games	Logical Resource	Structural constant
 Wang, 2017	\mathbb{P}_{k}	Pebble games	Variables	Treewidth
Abramsky \& Shah, 2018	\mathbb{E}_{n}	Ehrenfeucht-Fraïssé	Quantifier depth	Treedepth
Abramsky \& Shah, 2018	\mathbb{M}_{d}	Modal bisimulation	Modal depth	Modal unfolding depth
 Dawar, 2021	$\mathbb{G}_{n, k}$	Generalised quantifier games	Lindstrom quantifiers of fixed arity	Extended tree depth

And others have been created for guarded logics
and pathwidth.

Rank logic and its games

Linear algebra in the search for PTIME

$\subset \bigcup \mathscr{L}_{\infty \omega}^{k}\left(\mathbb{Q}_{n}\right) \quad \mathbb{G}_{n, k}$

- In terms of logics we can work with:
- k-variable fixed point logic with counting doesn't capture P (CFI construction)
- For any k fixed point logic extended with all n-ary Lindstrom quantifiers doesn't capture P (Hella 1993)
- But we know that if there is a logic for P it is FPC extended with some vectorised family of Lindstrom quantifiers (Dawar, 1994)
- One of the two leading contenders for a logic for PTIME is fixed point logic extended with rank quantifiers

Fixed point with rank

- This logic takes FO extended with least fixed point operators and extends it with a further family of quantifiers $\mathbf{r k}_{m, q}^{\geq r}$ which binds \mathbf{x}, \mathbf{y} in $\Psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$ (which are each m-tuples of free variables)
- $\Psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$ defines a $|A|^{m} \times|A|^{m}$ 0-1 matrix indexed by m-tuples of A

```
\mathscr { A } , \mathbf { a } \vDash \Psi ( x _ { 0 } , y _ { 0 } , \mathbf { z } )
A,\mathbf{a}\vDash\neg\Psi(\mp@subsup{x}{1}{},\mp@subsup{y}{0}{},\mathbf{z})
```


$$
\mathscr{A}, \mathbf{a} \vDash \mathbf{r k}_{m, q}^{\geq r} \Psi(\mathbf{x}, \mathbf{y}, \mathbf{z})
$$

M_{Ψ} has rank $\geq r$ over \mathbb{F}_{q}

Brief history of fixed point with rank

- FPR introduced by Dawar, Grohe, Holm, Laubner 2009
- Matrix equivalence and IM-games, Dawar \& Holm 2012
- Rank logic is dead long live rank logic, FPR*, Grädel \& Pakusa 2015
- IM-games and linear algebraic logic $\mathbf{L A}^{k}$, Dawar, Grädel, Pakusa 2019

$\exists \mathbf{P e b}^{k}(\mathscr{A}, \mathscr{B})$: Duplicator responds to Spoiler "in real time"

Logic: $\exists^{+} \mathscr{L}_{\infty \omega}^{k}$

- Lists of Spoiler moves have tree structure Game captured by \mathbb{P}_{k} comonad

- Spoiler moves p_{1} to a_{1}^{\prime}
- Duplicator responds by moving p_{1} to b_{1}^{\prime}

$\exists \mathrm{Fun}_{n}^{k}(\mathscr{A}, \mathscr{B})$: Duplicator responds to Spoiler "in advance"

Logic: $\mathscr{L}_{\infty \omega}^{k}\left(\mathbb{Q}_{n}^{h}\right)$
Lists of Spoiler moves have quotiented tree structure Game captured by $\mathbb{G}_{n, k}$ comonad

Partition games: in between these two

- Spoiler announces the list of m pebbles $\left\langle p_{1}, p_{2}, \ldots p_{m}\right\rangle$ he intends to move
- Duplicator provides partitions P, Q of A^{m}, B^{m} and bijection f between the parts of each
- Spoiler moves pebbles on A to $\left\langle\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right\rangle$ and moves corresponding pebbles on B to some list in $f\left(\left[\left\langle\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}\right\rangle\right]\right)$

Restricting partitions using linear algebraic constraints

Linear algebraic conditions on $\left(M_{1}, \ldots M_{n}\right)$

Duplicator wins $\mathbf{M E}_{n}^{k}(\mathscr{A}, \mathscr{B})$

- Matrix equivalence condition:

For any prime q and $\gamma:[n] \rightarrow \mathbb{F}_{q}$

$$
\begin{gathered}
\Longleftrightarrow \\
\mathscr{A} \equiv_{F P R_{n}^{k}} \mathscr{B} \\
\text { (Dawar } \& \text { Holm) }
\end{gathered}
$$

$$
\operatorname{rank}\left(\gamma_{1} M_{1}^{P}+\ldots+\gamma_{n} M_{n}^{P}\right)=\operatorname{rank}\left(\gamma_{1} M_{1}^{Q}+\ldots+\gamma_{n} M_{n}^{Q}\right) \quad \text { in } \mathbb{F}_{q}
$$

- Invertible-map condition:

There is an $A^{m} \times B^{m}$ invertible matrix S over \mathbb{F}_{q} s.t. for each i

$$
S^{-1} M_{i}^{P} S=M_{i}^{Q} \quad \text { in } \mathbb{F}_{q}
$$

Partition game comonads?

Why finding a comonad for these partition games is difficult

1. The rules are complicated!
2. The $\operatorname{map}\left\langle A, R_{1}, \ldots R_{n}\right\rangle \mapsto\left(M^{R_{1}}, \ldots, M^{R_{n}}\right)$ is not a functor!
3. There are no known related one-way or cops \& robbers games

Progress towards finding a comonad for these games

1. Generalised quantifiers captured in $\mathbb{G}_{n, k}$
2. One-way partition games defined (but still not fully understood)
3. Duplicator winning strategies for $\mathbf{I M}_{n}^{k}$ correspond to subsets of Kleisli homsets for $\mathscr{K}\left(\mathbb{P}_{k}\right)$

Open questions

1. What is the "existential positive" logic for one-way linear algebra games?
2. Is there an appropriate structural parameter that extends treewidth? (i.e. Cops and robbers with linear algebraic rules)
3. Is it possible to show that partition games don't behave like other game comonads?
Abramsky \& Reggio Arboreal Categories, 2021

Thanks for listening!

