Partition games, compositionally Towards game comonads for linear algebraic logics

BCTCS, March 2021, (virtual) Liverpool

Adam Ó Conghaile, Department of Computer Science, University Cambridge

Talk outline

- Games in logic, finite model theory and descriptive complexity
- Game comonads so far: a powerful categorical semantics for logic games
- Partition games & their relation to linear algebraic logic
- Obstacles, progress and open questions in relating linear algebra and game comonads

Games in Descriptive Complexity & Finite Model Theory A crash course

Descriptive Complexity A quick tour

- (Fagin's Theorem, 1973) A class of finite structures is decidable in NP if and only if it is expressible in ∃SO
- (Gurevich's Conjecture, 1988)
 There is no equivalent logic for P
- Candidate logics for P include rank logic, and choiceless polynomial time.

The hunt for a logic for PTIME

- FO can't even express parity or connectedness.
- FPC captures PTIME on totally ordered finites structures. (Immerman, Vardi)
- FPC does not capture P on all structures (Cai, Furer Immerman, 1992)
- Other logics have been suggested which extend the power of FPC.

Spoiler-Duplicator games used to prove upper bounds

• Expressiveness upper bounds : $\{\mathscr{A}_k\}$ all with P, $\{\mathscr{B}_k\}$ all lacking PShow that $\mathscr{A}_k \equiv_{\mathscr{L}_k} \mathscr{B}_k$ then Pinexpressible in $\mathscr{L} = \bigcup \mathscr{L}_k$

Duplicator winning implies that $\mathscr{A} \equiv_{\mathscr{L}_k} \mathscr{B}$

Harder game for Duplicator means more expressive \mathcal{L}_k

One-way variants also important Evidence that $\mathcal{A} \not\rightarrow \mathcal{B}$ • Expressiveness upper bounds : $\{\mathscr{A}_k\}$ all with P, $\{\mathscr{B}_k\}$ all lacking P $\exists \mathsf{Peb}^k(\mathscr{A},\mathscr{B})$ Spoiler **Duplicator** Show that $\mathscr{A}_k \equiv_{\mathscr{L}_k} \mathscr{B}_k$ then P**Refutation of evidence**

- inexpressible in $\mathscr{L} = \bigcup \mathscr{L}_k$
- <u>Success of algorithms:</u> For one-way k-pebble game, Duplicator wins iff k-local consistency algorithm says CSP $\mathcal{A} \to \mathcal{B}$ has solution

Duplicator winning implies that $\mathscr{A} \Rrightarrow_{\mathscr{L}'_{k}} \mathscr{B}$

Harder game for Duplicator means more expressive \mathscr{L}'_k

... and many other types of games exist!

- Expressiveness upper bounds : $\{\mathscr{A}_k\}$ all with $P, \{\mathscr{B}_k\}$ all lacking PShow that $\mathscr{A}_k \equiv_{\mathscr{L}_k} \mathscr{B}_k$ then *P* inexpressible in $\mathscr{L} = \cup \mathscr{L}_k$
- Success of algorithms: For one-way k-pebble game, Duplicator wins iff k-local consistency algorithm says CSP $\mathscr{A} \to \mathscr{B}$ has solution
- Proving a structure decomposes: Game played on one structure between a "robber" and k "cops" is won by cops when \mathscr{A} has treewidth < k

 $\mathsf{CR}^k(\mathscr{A})$ Å Cops use weaknesses of \mathscr{A} to trap robber

Robber uses complexity of \mathscr{A} to evade cops

Cops winning implies that \mathscr{A} has a decomposition

Harder game for cops means simpler decomposition of \mathscr{A}

Game comonads: the story so far

History of game comonads

- Abramsky, Dawar & Wang, 2017 $\mathbb{P}_k \mathscr{A}$ construction which put a relational structure on the tree of histories of Spoiler moves in $\exists \mathbf{Peb}^{k}(\mathscr{A}, -)$
- This turned out to be a comonad!
- Its Kleisli category relates $\exists \mathbf{Peb}^{k}(\mathscr{A}, \mathscr{B}) \text{ and } \mathbf{Bij}^{k}(\mathscr{A}, \mathscr{B})$
- Its coalgebras correspond to winning strategies for cops in $\mathbf{CR}^k(\mathscr{A})$

 $\mathbb{P}_k \mathscr{A} \to \mathscr{B}$ \Leftrightarrow **Duplicator wins** $\exists \mathbf{Peb}^{k}(\mathscr{A}, \mathscr{B})$

 \mathbb{P}_k

 $\mathscr{A}\cong_{\mathscr{K}(\mathbb{P}_k)}\mathscr{B}$ \Leftrightarrow **Duplicator wins Bij**^k(\mathscr{A}, \mathscr{B}) $\exists \alpha : \mathscr{A} \to \mathbb{P}_k \mathscr{A}$ a coalgebra Cops win $CR^k(\mathscr{A})$

Developments in game comonads

Reference	Comonad	Related games	Logical Resource	Structural constant
Abramsky, Dawar & Wang, 2017	\mathbb{P}_k	Pebble games	Variables	Treewidth
Abramsky & Shah, 2018	\mathbb{E}_n	Ehrenfeucht-Fraïssé	Quantifier depth	Treedepth
Abramsky & Shah, 2018	\mathbb{M}_d	Modal bisimulation	Modal depth	Modal unfolding depth
Ó Conghaile & Dawar, 2021	$\mathbb{G}_{n,k}$	Generalised quantifier games	Lindstrom quantifiers of fixed arity	Extended tree depth

And others have been created for guarded logics and pathwidth.

Rank logic and its games

Linear algebra in the search for PTIME

- In terms of logics we can work with:
 - k-variable fixed point logic with counting doesn't capture P (CFI construction)
 - For any k fixed point logic extended with all n-ary Lindstrom quantifiers doesn't capture P (Hella 1993)
- But we know that if there is a logic for P it is FPC extended with some vectorised family of Lindstrom quantifiers (Dawar, 1994)
- One of the two leading contenders for a logic for PTIME is fixed point logic extended with rank quantifiers

 $\subset \bigcup \mathscr{L}^k_{\infty \omega}(\mathscr{Q}_n)$

Fixed point with rank

- are each *m*-tuples of free variables)
- $\Psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$ defines a $|A|^m \times |A|^m$ 0-1 matrix indexed by *m*-tuples of A

 This logic takes FO extended with least fixed point operators and extends it with a further family of quantifiers $\mathbf{rk}_{m,q}^{\geq r}$ which binds \mathbf{x}, \mathbf{y} in $\Psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$ (which

 $\mathscr{A}, \mathbf{a} \models \mathbf{rk}_{m,q}^{\geq r} \Psi(\mathbf{x}, \mathbf{y}, \mathbf{z})$ M_{Ψ} has rank $\geq r$ over \mathbb{F}_{a}

Brief history of fixed point with rank

- FPR introduced by Dawar, Grohe, Holm, Laubner 2009
- Matrix equivalence and IM-games, Dawar & Holm 2012
- Rank logic is dead long live rank logic, FPR*, Grädel & Pakusa 2015
- IM-games and linear algebraic logic \mathbf{LA}^k , Dawar, Grädel, Pakusa 2019

$\exists \mathbf{Peb}^k(\mathscr{A}, \mathscr{B})$: Duplicator responds to Spoiler "in real time"

Spoiler moves p₁ to a'₁
Duplicator responds by moving p₁ to b'₁

$\exists \mathbf{Fun}_n^k(\mathscr{A}, \mathscr{B})$: Duplicator responds to Spoiler "in advance"

Partition games: in between these two

ullet

With no constraints on the partitions available to Duplicator this makes the game easier than the normal pebble game

• Spoiler announces the list of *m* pebbles $\langle p_1, p_2, \dots p_m \rangle$ he intends to move Duplicator provides partitions $P, Q \text{ of } A^m, B^m \text{ and bijection } f$ between the parts of each • Spoiler moves pebbles on A to $\langle \alpha_1, \alpha_2, \dots \alpha_n \rangle$ and moves corresponding pebbles on B to some list in $f([\langle \alpha_1, \alpha_2, ..., \alpha_n \rangle])$

Restricting partitions using linear algebraic constraints

Linear algebraic conditions on (M_1, \ldots, M_n)

Matrix equivalence condition: For any prime q and $\gamma : [n] \to \mathbb{F}_q$

 $\operatorname{rank}(\gamma_1 M_1^P + \ldots + \gamma_n M_n)$

Invertible-map condition: There is an $A^m \times B^m$ invertible matrix S over \mathbb{F}_a s.t. for each i

Duplicator wins $ME_n^k(\mathscr{A}, \mathscr{B})$

 \Leftrightarrow $\mathscr{A} \equiv_{FPR_n^k} \mathscr{B}$ (Dawar & Holm)

$$M_n^P$$
) = rank $(\gamma_1 M_1^Q + \dots + \gamma_n M_n^Q)$ in \mathbb{F}_q

 $S^{-1}M_i^P S = M_i^Q$ in \mathbb{F}_q

Duplicator wins $\mathbf{IM}_n^k(\mathscr{A}, \mathscr{B})$ $\mathscr{A} \equiv_{LA_n^k} \mathscr{B}$ (Dawar, Gradel, Paduas)

Partition game comonads?

Why finding a comonad for these partition games is difficult

1. The rules are complicated!

2. The map $\langle A, R_1, \dots, R_n \rangle \mapsto (M^{R_1}, \dots, M^{R_n})$ is **not** a functor!

3. There are no known related one-way or cops & robbers games

Progress towards finding a comonad for these games

1. Generalised quantifiers captured in $\mathbb{G}_{n,k}$

2. <u>One-way partition games defined (but still not fully understood)</u>

homsets for $\mathscr{K}(\mathbb{P}_{k})$

3. Duplicator winning strategies for IM_n^k correspond to subsets of Kleisli

Open questions

1. What is the "existential positive" logic for one-way linear algebra games?

2. Is there an appropriate structural parameter that extends treewidth? (i.e. Cops and robbers with linear algebraic rules)

3. comonads? Abramsky & Reggio Arboreal Categories, 2021

Is it possible to show that partition games don't behave like other game

Thanks for listening!