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Talk Outline

• A very rapid overview and motivation of my work 


• A history of the connection between logic, games and complexity theory


• Game Comonads: a new framework for thinking about games in logic


• Oracles, generalised quantifiers and how these fit into game comonads 



A quick introduction



Two Very Important Problems

𝒳 → 𝒟? 𝒢 ≅ ℋ?

Constraint Satisfaction Problem Graph Isomorphism Problem

Either  or 

(Bulatov & Zhuk, 2018)

P NP-Complete

SAT-solvers, Sudoku 

querying databases  

Verification, code optimisation, 

pattern recognition  

Not known to be  or 

Suspected “intermediate problem”

P NP-Complete

-local consistency algorithmk -Weisfeiler-Lehman algorithmk

Uses

Complexity

 

Approximations

P-Time

Is there a homomorphism? Is there an isomorphism?

Logic => Games => Game Comonads



Logic is the key to understanding these algorithms

-local consistency algorithmk

-Weisfeiler-Lehman algorithmk

𝒳 →k 𝒟 ⟺ 𝒳 ⇛∃+ℒk 𝒟?

𝒢 ≅k ℋ ⟺ 𝒢 ≡ℒk(♯) ℋ

Kolaitis & Vardi, 1992

Immerman & Lander, 1990



Games are the key to understanding logic

Spoiler Duplicator

Ç
1

Spoiler wants to convince Duplicator that  𝒳 ↛ 𝒟

Duplicator wants to convince Spoiler that  𝒳 → 𝒟

2
… k

Ç
1

2
… k

   ∃Pebk(𝒳, 𝒟)

…but they have limited access to  and 𝒳 𝒟

𝒳 𝒟

Theorem (Kolaitis & Vardi, 1992)

“Duplicator” has a winning strategy for  if and only if   ∃Pebk(𝒳, 𝒟) 𝒳 ⇛∃+ℒk 𝒟

𝒳 →k 𝒟 ⟺ 𝒳 ⇛∃+ℒk 𝒟?



Games are the key to understanding logic

Theorem (Hella, 1996)

Duplicator has a winning strategy for  if and only if   Bijk(𝒜, ℬ) 𝒜 ≡ℒk(♯) ℬ

Spoiler Duplicator

Ç
1

Spoiler wants to convince Duplicator that  𝒜 ≇ ℬ

Duplicator wants to convince Spoiler that  𝒜 ≇ ℬ

2
… k

Ç
1

2
… k

   Bijk(𝒜, ℬ)

…they have limited access to  and 

and Duplicator has to give a one-to-one map 

from A to B containing her moves

𝒳 𝒟

𝒜 ℬ

𝒢 ≅k ℋ ⟺ 𝒢 ≡ℒk(♯) ℋ



Game Comonads are the key to understanding these games

𝒳 →k 𝒟 ⟺ 𝒳 ⇛∃+ℒk 𝒟 ⟺ Duplicator wins ∃Pebk(𝒳, 𝒟) 𝒢 ≅k ℋ ⟺ 𝒢 ≡ℒk(♯) ℋ ⟺ Duplicator wins Bijk(𝒢, ℋ)

Research on Constraint Satisfaction Research on Graph Isomorphism

Missing Link?

“Pebbling” Comonad  (Abramsky, Dawar & Wang, 2018)ℙk

(ℛ(σ), ⇛∃+ℒk , ≡ℒk(♯) )



The history of logic, games & 
complexity



Finite Model Theory in One Slide
What models?  the class of relational structures over signature ℛ(σ) σ

𝒜 = ⟨A, (RA)R∈σ⟩ RA ⊂ Aar(R)

 is a homomorphism means that  

 defines a category 

f : 𝒜 → ℬ ∀R ∈ σ, (a1, …, am) ∈ RA ⟹ ( f(a1), …f(am)) ∈ RB

(ℛ(σ), → )
Why finite?

Any logic over sigma  comes with a semantics defining when  for any L[σ] 𝒜 ⊧ ϕ ϕ ∈ L[σ]

For FO over all structures:

ϕ ∈ FO is consistent  ⟺ there is some model of ϕ

For FO over finite structures:

(Gödel’s completeness theorem) (Trakhtenbrot’s Theorem) 

{ϕ ∈ FO | there is some finite model of ϕ} is undecideable.



A quick tour

• (Fagin’s Theorem, 1973) 
A class of finite structures is 
decidable in NP if and only if it is 
expressible in 


• (Gurevich’s Conjecture, 1988) 
There is no equivalent logic for 


• (Cai, Furer, Immerman, 1992) 
, for any .


• Candidate logics for  include rank 
logic, and choiceless polynomial time.

∃SO

P

ℒk(♯) ≠ PTIME k

P

Descriptive Complexity



Games: a key tool for logic

Spoiler-Duplicator Games on relational structures  over signature 𝒜, ℬ σ

Spoiler Duplicator

Refutation of evidence

Evidence that 𝒜 ↛ ℬ
One-way Games

Duplicator “wins” iff 𝒜 ⇛ℒ ℬ



Games: a key tool for logic

Spoiler-Duplicator Games on relational structures  over signature 𝒜, ℬ σ

Spoiler Duplicator

Refutation of evidence

Evidence that 𝒜 ≇ ℬ
One-way Games

Two-way Games

Duplicator “wins” iff 𝒜 ⇛ℒ ℬ

Duplicator “wins” iff 𝒜 ≡ℒ ℬ

The exact  depends on the rules of the gameℒ



Example of Spoiler-Duplicator 
Games



Spoiler chooses a1 Duplicator responds b1

a1 b1

Duplicator responds 
b2

Spoiler chooses 
a2

(σ = {E})

Ehrenfeucht-Fraïssé Game between     and      

Round 1

Round 2



Round 2 

Round 5

a1

a2

b1

b2

a1

a2

a4 a3

a5

b1

b2

b4

b3b5

Ehrenfeucht-Fraïssé Game between     and      



Harder game for Duplicator 
means more expressive ℒ

Duplicator winning implies that 
 and  are related in  𝒜 ℬ ℒ



Reference Game Corresponding Logical 
Relation

Fraïssé 1950’s ∃EFk(𝒜, ℬ) 𝒜 ⇛∃+ℒk
ℬ



Reference Game Corresponding Logical 
Relation

Fraïssé 1950’s

Kolaitis & Vardi 1992

Hella 1996

Hella 1996

∃Pebk(𝒜, ℬ) 𝒜 ⇛∃+ℒk ℬ

Bijk(𝒜, ℬ) 𝒜 ≡𝒞k ℬ

(∃)EFk(𝒜, ℬ) 𝒜 ⇛∃+ℒk
ℬ/𝒜 ≡ℒk

ℬ

Bijkn(𝒜, ℬ) 𝒜 ≡ℒk(𝒬n) ℬ Q𝒦

∃≥k



The Rise of Game Comonads



                  (ℛ(σ), → , ≅ ) (ℛ(σ), ⇛ℒ , ≡ℒ )

Can we connect these two categorically?  



Abramsky, Dawar & Wang’s Pebbling Comonad

ℙk𝒜 = ⟨(A × [k])+, relations from 𝒜 according to tree structure⟩

(a1, p1)

(a3, p3)

(am, pm)

(a′￼3, p′￼3)

⋮ ⋮

⋮ (a2, p2)

 is the universe of histories of Spoiler moves in the -pebble game(A × [k])+ k Relations on  are controlled by the last element and the tree structure ℙk𝒜

Given some a history of moves  s = [(a,2), (b,3), (c,1), (d,2), (e,1)] ∈ ℙk𝒜

Elements relevant for relations are the “live” ones  [(a,2), (b,3), (c,1), (d,2),(e,1)]

Live prefixes of  are  ,  and s [(a,2), (b,3)] [(a,2), (b,3), (c,1), (d,2)] s

 iff  and 
(s1, …sm) ∈ Rℙk𝒜 (ϵ(s1), …ϵ(sm)) ∈ R𝒜

∀i, j si and sj are related in the live prefix relation.

Last pebbled element is extracted by the function  ϵ(s) = e



Abramsky, Dawar & Wang’s Pebbling Comonad

ℙk𝒜 = ⟨(A × [k])+, relations from 𝒜 according to tree structure⟩

Counit ϵ : ℙk𝒜 → 𝒜

Comultiplication δ : ℙk𝒜 → ℙkℙk𝒜

ϵ([(a1, p1), …, (am, pm)]) = am

δ([(a1, p1), …, (am, pm)]) = [(s1, p1), …(sm, pm)]

where si = [(a1, p1)…, (ai, pi)]



Abramsky, Dawar & Wang’s Pebbling Comonad

ℙk𝒜 = ⟨(A × [k])+, relations from 𝒜 according to tree structure⟩

ℙk𝒜 → ℬ ⟺ Duplicator has a winning strategy for ∃Pebk(𝒜, ℬ)

𝒜 ≅𝒦(ℙk) ℬ ⟺ Duplicator has a winning strategy for Bijk(𝒜, ℬ)

Kleisli Category 𝒦(ℙk)



Abramsky, Dawar & Wang’s Pebbling Comonad

ℙk𝒜 → ℬ ⟺ Duplicator has a winning strategy for ∃Pebk(𝒜, ℬ)

𝒜 ≅𝒦(ℙk) ℬ ⟺ Duplicator has a winning strategy for Bijk(𝒜, ℬ)

Kleisli Category 𝒦(ℙk)

Coalgebras  
α : 𝒜 → ℙk𝒜 ⟺ 𝒜 has a tree decomposition of width k

ℙk𝒜 = ⟨(A × [k])+, relations from 𝒜 according to tree structure⟩



A surprising discovery: coalgebras are decompositions

ℙkℙk𝒜

𝒜

ℙk𝒜

ℙk𝒜 α

ℙkα

αδA

𝒜

𝒜

ℙk𝒜
α

ϵAidA

Coalgebras of a comonad

Morphisms  satisfying two lawsα : 𝒜 → ℙk𝒜

Counit Law:

Comultiplication Law:

Tree decompositions of a relational structure

Robertson & Seymour pioneered the 
study of taking a relational structure 

and studying its decompositions such 
as that below

This is a tree 
decomposition of width 2

There exists  a coalgebra
α : 𝒜 → ℙk𝒜
⟺ 𝒜 has a tree decomposition of width k

Abramsky, Dawar & Wang 2017



                  (ℛ(σ), → , ≅ ) (ℛ(σ), ⇛ℒ , ≡ℒ )

Can we connect these two categorically?  Yes!



                     (ℛ(σ), → , ≅ ) (ℛ(σ), ⇛∃+ℒk , ≡𝒞k )

Can we connect these two categorically?  Yes!

ℙk

Where  is graded in  which controls the number of variables in the underlying logicℙk k



Reference Comonad Related games Logical Resource Coalgebra 
parameter

ADW 2017 Pebble games Variables Treewidthℙk



Reference Comonad Related games Logical Resource Coalgebra 
parameter

ADW 2017 Pebble games Variables Treewidth

Abramsky & Shah 
2018 Ehrenfeucht-Fraïssé Quantifier depth Treedepth

ℙk

𝔼n



Reference Comonad Related games Logical Resource Coalgebra 
parameter

ADW 2017 Pebble games Variables Treewidth

Abramsky & Shah 
2018 Ehrenfeucht-Fraïssé Quantifier depth Treedepth

Abramsky & Shah 
2018 Modal bisimulation Modal depth Modal unfolding 

depth

ℙk

𝔼n

𝕄n



and 

→𝒦  is  ⇛∃+ℒ

≅𝒦  is  ⇛ℒ(∃≥m)



My work on game comonads 
and quantifiers



Need more power? Consult an oracle!

Computing…
PAUSE

Computing…

Asks v. hard yes/no question

Sends correct answer 
immediately

Output

Input

Oracle computation exists everywhere in computer science, cryptography and complexity theory (and Ancient Greece!)

In the world of logic, oracles are added using “generalised quantifiers” (due to Per Lindstrom)

Some work had already been done (by Hella) giving a two-way game for logics extended by these oracles.

Duplicator wins Bijkn(𝒜, ℬ) ⟺ 𝒜 ≡ℒk(Qn) ℬ



Quantifiers as a Resource



ℛ(σ)
𝒜

A relational structure 𝒜 = ⟨A, (R𝒜)R∈σ⟩ ∈ ℛ(σ)

Building a new quantifier



ℛ(τ)

𝒦

A class of structures

𝒜 = ⟨A, (R𝒜)R∈σ⟩ ∈ ℛ(σ)

𝒦 ⊂ ℛ(τ)

Building a new quantifier



ℛ(σ) ℛ(τ)
Ψ( ⋅ , y)

An interpretation

𝒜 = ⟨A, (R𝒜)R∈σ⟩ ∈ ℛ(σ)

𝒦 ⊂ ℛ(τ)

Ψ(x, y) = ⟨ψT(xT, yT)⟩T∈τ

Building a new quantifier



𝒜 = ⟨A, (R𝒜)R∈σ⟩ ∈ ℛ(σ)

𝒦 ⊂ ℛ(τ)

Ψ(x, y) = ⟨ψT(xT, yT)⟩T∈τ

𝒜, b ⊨ Q𝒦x . Ψ(x, y)

ℛ(σ) ℛ(τ)
𝒜

𝒦Ψ( ⋅ , b)

A new quantifier

Building a new quantifier



ℛ(σ) ℛ(τ)
𝒜

𝒦

Ψ( ⋅ , b)A new quantifier

𝒜 = ⟨A, (R𝒜)R∈σ⟩ ∈ ℛ(σ)

𝒦 ⊂ ℛ(τ)

Ψ(x, y) = ⟨ψT(xT, yT)⟩T∈τ

𝒜, b ⊭ Q𝒦x . Ψ(x, y)

Building a new quantifier



Spoiler Duplicator

Provides  a bijectionf : A → B

Moves  to   pi1, …, pim f(ai1), …, f(aim)

Moves  to  pi1, …, pim ai1, …, aim

 game (Hella 1996)Bijkn(𝒜, ℬ)

 is -variable infinitary first-order logic extended by quantifiers of isomorphism-closed classes of structures with no 
relation of arity   

ℒk(Qn) k
> n

Theorem (Hella 1996)

Duplicator has a winning strategy for  if and only if   Bijkn(𝒜, ℬ) 𝒜 ≡ℒk(Qn) ℬ

A game to control these new quantifiers 



 : a comonad for quantifiers𝔾n,k



Improving our understanding of these oracles

Theorem 15 (Ó C. & Dawar, 2021)

For a game  from the left-hand diagram, Duplicator wins  if and only if  where  
is the corresponding logic from the right-hand diagram 

𝒢 𝒢(𝒜, ℬ) 𝒜 ⇛ℒ𝒢 ℬ ℒ𝒢

All “n-ary” quantifiers

(including  for n = 1)♯

“n-ary” hom-closed quantifiers

(including  for n = 1)∃



Constructing a new comonad from an old one
Pebbling Comonad New Generalised Quantifier Comonad

ℙk𝒜 → ℬ ⟺ ∃Pebk(𝒜, ℬ) ⟺ 𝒜 ⇛∃+ℒk ℬ

   ℙk𝒜 ≅ ℙkℬ ⟺ Bijk(𝒜, ℬ) ⟺ 𝒜 ≡ℒk(♯) ℬ

+Funk
n(𝒜, ℬ) ⟺ 𝒜 ⇛+ℒk(Qh

n) ℬ

   Bijkn(𝒜, ℬ) ⟺ 𝒜 ≡ℒk(Qn) ℬ

Lemma 20 (Ó C. & Dawar, 2021)

Duplicator has a winning strategy for  if and only if she has an “ -consistent” winning 
strategy for 
+Funk

n(𝒜, ℬ) n
∃Pebk(𝒜, ℬ)

Then defined  a relation on any  such that ≈n ℙk𝒜
ℙk𝒜/ ≈n → ℬ ⟺ Duplicator wins ∃Pebk(𝒜, ℬ) n-consistently

𝔾n,k𝒜 := ℙk𝒜/ ≈n

⟺ 𝔾n,k𝒜 → ℬ

⟺ 𝔾n,k𝒜 ≅ 𝔾n,kℬ



Consequences of this new comonad

𝔾n,k𝒜 → ℬ ⟺ Duplicator has a winning strategy for  + Funk
n(𝒜, ℬ)

𝒜 ≅𝒦(𝔾n,k) ℬ ⟺ Duplicator has a winning strategy for Bijkn(𝒜, ℬ)

Kleisli Category 𝒦(𝔾n,k)

Coalgebras  
α : 𝒜 → 𝔾n,k𝒜 ⟺ 𝒜 has an extended tree decomposition of width k and arity n

𝔾n,k𝒜 = ℙk𝒜/ ≈n



Conclusions & Future Directions
A much clearer understanding of the relation between quantifiers and the Kleisli Category of game comonads 



and 

→𝒦  is  ⇛∃+ℒ

≅𝒦  is  ⇛ℒ(∃≥m)



Conclusions & Future Directions
A much clearer understanding of the relation between quantifiers and the Kleisli Category of game comonads 

A method for constructing new games and new game comonads from old ones.  
Can we turn more game theoretic translations into category theory?



and 

→𝒦  is  ⇛∃+ℒ

≅𝒦  is  ⇛ℒ(∃≥m)

𝔾n,k𝒜 = ℙk𝒜/ ≈n



Conclusions & Future Directions
A much clearer understanding of the relation between quantifiers and the Kleisli Category of game comonads 

A method for constructing new games and new game comonads from old ones.  
Can we turn more game theoretic translations into category theory?

Some of the candidate logics for P (e.g. rank logic) are defined using classes of generalised quantifiers.

Can techniques from this work help us to make new comonads for these logics? 



and 

→𝒦  is  ⇛∃+ℒ

≅𝒦  is  ⇛ℒ(∃≥m)

𝔾n,k𝒜 = ℙk𝒜/ ≈n



Extra material if there’s time



Creating a new comonad from ℙk

Spoiler Duplicator

Moves  to  p1 a1

    [(p1, a1)] ↦

Duplicator’s strategy in ∃Pebk(𝒜, ℬ) A homomorphism ℙk𝒜 → ℬ



Creating a new comonad from ℙk

Moves  to  p1 b1

Spoiler Duplicator

        [(p1, a1)] ↦ b1

Duplicator’s strategy in ∃Pebk(𝒜, ℬ) A homomorphism ℙk𝒜 → ℬ



Creating a new comonad from ℙk

Spoiler Duplicator

Moves  to  p2 a2

    [(p1, a1), (p2, a2)] ↦

        [(p1, a1)] ↦ b1

Duplicator’s strategy in ∃Pebk(𝒜, ℬ) A homomorphism ℙk𝒜 → ℬ



Creating a new comonad from ℙk

Moves  to  p2 b2

Spoiler Duplicator         [(p1, a1), (p2, a2)] ↦ b2

        [(p1, a1)] ↦ b1

Duplicator’s strategy in ∃Pebk(𝒜, ℬ) A homomorphism ℙk𝒜 → ℬ



Creating a new comonad from ℙk

Spoiler Duplicator

Provides f : A → B

Moves  to   pi1, …, pim f(ai1), …, f(aim)

Moves  to  pi1, …, pim ai1, …, aim

Duplicator’s strategy in +Funk
n(𝒜, ℬ) A homomorphism 𝔾n,k𝒜 → ℬ

???

Lemma 20 (Ó C. & Dawar, 2021)

Duplicator has a winning strategy for  if and only if she has an “ -consistent” winning 
strategy for 
+Funk

n(𝒜, ℬ) n
∃Pebk(𝒜, ℬ)



Creating a new comonad from ℙk

Spoiler Duplicator

Duplicator’s “ -consistent” strategy for n ∃Pebk(𝒜, ℬ) A “special” homomorphism ℙk𝒜 → ℬ

Declares f : A → B



Creating a new comonad from ℙk

Spoiler Duplicator

Declared f : A → B

Moves  to  p1 a1

    [(p1, a1)] ↦

Duplicator’s “ -consistent” strategy for n ∃Pebk(𝒜, ℬ) A “special” homomorphism ℙk𝒜 → ℬ



Creating a new comonad from ℙk

Moves  to  p1 f(a1)

Spoiler

        [(p1, a1)] ↦ f(a1)

Duplicator

Declared f : A → B

Duplicator’s “ -consistent” strategy for n ∃Pebk(𝒜, ℬ) A “special” homomorphism ℙk𝒜 → ℬ



Creating a new comonad from ℙk

Spoiler

Moves  to  pm am

⋮
        [(p1, a1)] ↦ f(a1)

Duplicator

Declared f : A → B
Moves  to  pm f(am)

        [(p1, a1), …(pm, am)] ↦ f(am)

Duplicator’s “ -consistent” strategy for n ∃Pebk(𝒜, ℬ) A “special” homomorphism ℙk𝒜 → ℬ

Game continues with Duplicator declaring a new  after Spoiler moves  pebbles (or earlier if Spoiler repeats a pebble).f n
 an equiv. rel.  s.t. homomorphism   -consistent strategy for Duplicator in ∃ ≈n ℙk𝒜/ ≈n → ℬ ⟺ n ∃Pebk(𝒜, ℬ)

 strategy for Duplicator in ⟺ +Funk
n(𝒜, ℬ)



Coalgebras are decompositions: revisited
Tree decompositions of a relational structure

Robertson & Seymour pioneered the 
study of taking a relational structure 

and studying its decompositions such 
as that below

This is a tree 
decomposition of width 2

There exists  a coalgebra
α : 𝒜 → ℙk𝒜
⟺ 𝒜 has a tree decomposition of width k

Abramsky, Dawar & 
Wang 2017



Coalgebras are decompositions: revisited

There exists  a coalgebra
α : 𝒜 → 𝔾n,k𝒜
⟺ 𝒜 has an extended tree decomposition of width k and arity n

Ó C & Dawar, 2021

This is an extended tree 
decomposition of width 1 

and arity 2



Coalgebras are decompositions: revisited

 cops & robber game on a graphk

Cops Win

•  cops occupy  nodes of the graph, the robber occupies one node

• On each turn any number of cops can fly between any nodes of the graph 

but they must announce their moves to the robber ahead of time and once in 
the air they are removed from the board


• The robber responds by running (along edges of the graph) without passing 
through a niode occupied by a (stationary) cop.


• The cops in the air then land and if the robber is in on a node now occupied 
by a cop, he loses.


• The robber wins by evading capture indefinitely

k k



Coalgebras are decompositions: revisited

Cops Win



Coalgebras are decompositions: revisited

 cops, n-beacon & robber game on a hypergraphk

• Similar to the cops and robbers game with two differences

• (a) Cops can now light any number of beacons on each turn

• (b) Robber can move through any two vertices connected by a hyperedge 

except if either vertex is occupied by a cop or the entire edge is filled with 
cops and beacons and there are at most  beacons.


• Cops still win if they can 
n



Coalgebras are decompositions: revisited

Cops Win


