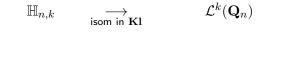
Extending FO logic with topology

Adam Ó Conghaile joint with Anuj Dawar and Yoàv Montacute

September 2021

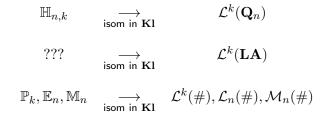
$\mathbb{P}_k, \mathbb{E}_n, \mathbb{M}_n \xrightarrow{\text{isom in } \mathbf{Kl}} \mathcal{L}^k(\#), \mathcal{L}_n(\#), \mathcal{M}_n(\#)$

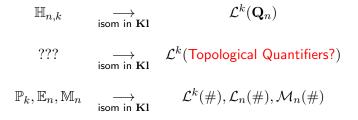
< A > <



$$\mathbb{P}_k, \mathbb{E}_n, \mathbb{M}_n \xrightarrow{} \mathcal{L}^k(\#), \mathcal{L}_n(\#), \mathcal{M}_n(\#)$$

э





▲ 伊 ▶ ▲ 三

- Why topology?
- Generalised topology quantifiers
- The topology of homsets

Part 1: Why topology?

Image: A matrix and a matrix

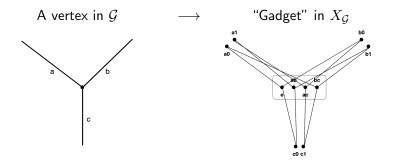
The original **CFI construction** is a pair of transforms X_-, \tilde{X}_- sending 3-regular graphs to 3-regular graphs. For any k and \mathcal{G} of large enough tree width, we have

$$X_{\mathcal{G}} \equiv_{\mathcal{L}^k(\#)} \tilde{X}_{\mathcal{G}}$$
 but $X_{\mathcal{G}} \not\cong \tilde{X}_{\mathcal{G}}$

Rank and linear algebraic quantifiers distinguish them

$$X_{\mathcal{G}} \not\equiv_{\mathcal{L}^k(\mathbf{LA})} \tilde{X}_{\mathcal{G}}$$

Vertices in CFI construction



An edge a in ${\mathcal G}$

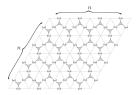
Untwisted edge in $X_{\mathcal{G}}$

Twisted edge in $\tilde{X}_{\mathcal{G}}$

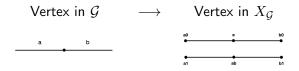
 $\tilde{X}_{\mathcal{G}}$ contains exactly one "twisted" edge.

Why topology?

 $\bullet \ {\cal G}$ as triangulation of torus



• 2-regular CFI graphs distinguished by connectedness



• Grohe implies $L^k(\#)$ captures isom on any class of graphs of bounded genus.

Question 1 Can we devise a (tractably computable) topology-based equivalence relation $\equiv_{\mathcal{T}}$ which distinguishes $X_{\mathcal{G}}$ and $\tilde{X}_{\mathcal{G}}$?

Question 2 Is there a categorical semantics for any such equivalence relation?

Part 2: Topology quantifiers

æ

 $\Psi^T(\mathbf{x}, \mathbf{y})$ a type T interpretation is a collection of $\mathcal{L}[\sigma]$ formulae in \mathbf{x} and \mathbf{y} which defines for any structure \mathcal{A} and any asgmt \mathbf{a} to variable \mathbf{x} an object of type T which depends only on the truth values of the formulas in Ψ^T in \mathcal{A}, \mathbf{a} as \mathbf{y} varies over A^n

- $\Psi^{Set} = \psi(\mathbf{x}, \mathbf{y})$ interprets a **set** for any \mathcal{A}, \mathbf{a}
- $\Psi^{\tau} = \langle \psi_R(\mathbf{x}, y_1, \dots y_{n_R}) \rangle_{R \in \tau}$ interprets a τ -structure for any \mathcal{A}, \mathbf{a}
- $\Psi^{\mathbb{F}Mod} = \langle \psi_{M_i}(\mathbf{x}, y_1, \dots y_{2n}) \rangle_{i \in [r]}$ interprets a **tuple of** $r \ n \times n$ **0-1 matrices over** \mathbb{F} for any \mathcal{A}, \mathbf{a}

A type T quantifier $\mathcal{Q}_{\mathcal{K}}^T$ for $L[\sigma]$ is described by an isom-closed class \mathcal{K} of T objects and binds the \mathbf{y} variables of $\Psi^T(\mathbf{x}, \mathbf{y})$ an $L[\sigma]$ -interpretation of type T.

 $\mathcal{Q}_{\mathcal{K}}^T \mathbf{y}. \Psi^T(\mathbf{x}, \mathbf{y}) \text{ is true on } \mathcal{A}, \mathbf{a} \text{ if and only is the corresponding } T \text{ object is} \\ \text{ in } \mathcal{K}$

- $\Psi^{\mathbf{Set}} = \psi(\mathbf{x}, \mathbf{y})$ quantifiers $\mathcal{Q}_{\mathcal{K}}^{\mathbf{Set}}$ are ¹ counting quantifiers $\exists^{\leq t}$
- $\Psi^{\tau} = \langle \psi_R(\mathbf{x}, y_1, \dots, y_{n_R}) \rangle_{R \in \tau}$ quantifiers $\mathcal{Q}_{\mathcal{K}}^{\tau}$ are generalized quantifiers of τ structures • $\Psi^{\mathbb{F}\mathbf{Mod}} = \langle \psi_{M_i}(\mathbf{x}, y_1, \dots, y_{2n}) \rangle_{i \in [r]}$

quantifiers $\mathcal{Q}_{\mathcal{K}}^{\mathbb{F}\mathbf{Mod}}$ are linear-algebraic quantifiers over $\mathbb F$

¹arbitrary conjunctions and disjunctions of

Abstract simplicial complex $\Delta = (V, S)$ a pair of vertex set V and simplex set S, a downward closed subset of 2^V Dimension of a simplex $s \in S$ is |s| - 1.

$$\Psi^{\mathbf{Simp}_n} = \langle \psi_m(\mathbf{x}, y_1, \dots y_m) \rangle_{m \in [n+1]}$$

Interpretation of n-dimensional abstract simplicial complex from a $\sigma\text{-structure.}$

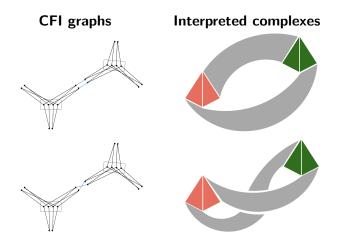
Which classes \mathcal{K} should be allowed?

\cong -closed?	As hard as GI
\simeq_h -closed?	??
\simeq_H -closed?	Tractable

- 《 戶司

э

An attempt at distinguishing CFI graphs



Sadly this interpretation did not create complexes for $X_{\mathcal{G}}$ and $X_{\mathcal{G}}$ with different homology!

- Can these complexes be distinguished by some other tractable topological property?
- Can we express the homology-based quantifiers $\mathcal{Q}_{\mathcal{K}}^{\mathbf{Simp}_n}$ in $\mathcal{L}^k(\#)$?
- Can we interpret another complex on $X_{\mathcal{G}}, \tilde{X}_{\mathcal{G}}$ which does distinguish them topologically?

Part 3: A Lovasz-type equivalence with topology

$\mathcal{A} \equiv_{\mathcal{L}} \mathcal{B} \iff \forall \mathcal{C} \in F \quad |\mathsf{hom}(\mathcal{C}, \mathcal{A})| = |\mathsf{hom}(\mathcal{C}, \mathcal{B})|$

< □ > < 同 > < 回 > < 回 > < 回 >

2

$\mathcal{A} \equiv_{\mathcal{L}} \mathcal{B} \iff \forall \mathcal{C} \in F \quad |\mathsf{hom}(\mathcal{C}, \mathcal{A})| = |\mathsf{hom}(\mathcal{C}, \mathcal{B})|$

Some known examples

\mathcal{L}	F
\cong	$\mathcal{R}_f(\sigma)$
$\mathcal{L}^k(\#)$	\mathcal{W}_k
$\mathcal{L}_n(\#)$	\mathcal{T}_n

< □ > < 同 > < 回 > < 回 > < 回 >

2

$\mathcal{A} \equiv_{\mathcal{L}} \mathcal{B} \iff \forall \mathcal{C} \in F \quad |\mathsf{hom}(\mathcal{C}, \mathcal{A})| = |\mathsf{hom}(\mathcal{C}, \mathcal{B})|$

Some known examples

\mathcal{L}	F
IIS	$\mathcal{R}_f(\sigma)$
$\mathcal{L}^k(\#)$	\mathcal{W}_k
$\mathcal{L}_n(\#)$	\mathcal{T}_n

... and many more thanks to Tomas, Luca and Anuj!

$$\mathcal{A} \equiv_{\mathcal{L}} \mathcal{B} \iff \forall \mathcal{C} \in F \quad \mathsf{hom}(\mathcal{C}, \mathcal{A}) \stackrel{?}{\simeq} \mathsf{hom}(\mathcal{C}, \mathcal{B})$$

Can we compare homsets in any way other than counting?

$$\mathcal{A} \equiv_{\mathcal{L}} \mathcal{B} \iff \forall \mathcal{C} \in F \quad \mathsf{hom}(\mathcal{C}, \mathcal{A}) \stackrel{?}{\simeq} \mathsf{hom}(\mathcal{C}, \mathcal{B})$$

Can we compare homsets in any way other than counting?

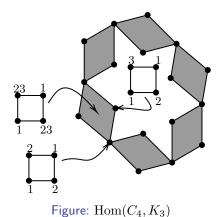
Yes! With topology

< 1 k

For $\mathcal{A}, \mathcal{B} \ \sigma$ -structures, the hom-complex $\operatorname{Hom}(\mathcal{A}, \mathcal{B})$ is a simplicial complex² with vertices the homomorphisms $f : \mathcal{A} \to \mathcal{B}$ where $\{f_1, \ldots f_m\}$ form a simplex if for all $a_1, \ldots, a_n \in A$ and all $R \in \sigma$,

$$(a_1,\ldots,a_n) \in R^{\mathcal{A}} \Longrightarrow \prod_i \{f_j(a_i)\}_{j \in [m]} \subseteq R^{\mathcal{B}}$$

²other mostly equivalent notions exist



• • • • • • • •

2

See board!

$\mathbf{Hom}(K_2, C_6) \cong \mathbf{Hom}(K_2, C_3 \cup C_3)$

э

• The 1-skeleton of the hom-complex can be thought of as a simple undirected graph where the 0-dimensional cells are its vertices and the 1-dimensional cells are its edges.

• The 1-skeleton of the hom-complex can be thought of as a simple undirected graph where the 0-dimensional cells are its vertices and the 1-dimensional cells are its edges.

Theorem (Kozlov)

For every two graphs G and H, the isomorphism type of Hom(G, H) is determined by the isomorphism type of $Hom^1(G, H)$.

Question.

Suppose A and B are finite (undirected) graphs such that

$$A \simeq^{\mathcal{C}} B \iff \forall F \in \mathcal{C}, Hom^1(F, A) \cong Hom^1(F, B).$$

For which class C the relation \simeq^{C} is isomorphism \cong ?

Question.

Suppose A and B are finite (undirected) graphs such that

$$A \simeq^{\mathcal{C}} B \iff \forall F \in \mathcal{C}, Hom^1(F, A) \cong Hom^1(F, B).$$

For which class C the relation \simeq^{C} is isomorphism \cong ?

 While we ask these questions for isomorphism-equivalence and finite undirected graphs, we would like to generalise them to homotopy-equivalence and general finite σ-structures. • For finite, simple, undirected graphs

$$\mathcal{G} \simeq^{\mathbf{J_2}} \mathcal{H} \implies \mathcal{G} \equiv_{\mathcal{L}^2(\#)} \mathcal{H}$$

э

Image: A matched block

Preliminary results

• For finite, simple, undirected graphs

$$\mathcal{G} \simeq^{\mathbf{J_2}} \mathcal{H} \implies \mathcal{G} \equiv_{\mathcal{L}^2(\#)} \mathcal{H}$$

• However . . .

Image: Image:

э

• For finite, simple, undirected graphs

$$\mathcal{G} \simeq^{\mathbf{J_2}} \mathcal{H} \implies \mathcal{G} \equiv_{\mathcal{L}^2(\#)} \mathcal{H}$$

• However . . .

• For graphs with loops

$$\mathcal{G} \simeq^{\mathbf{J_2}} \mathcal{H} \implies \mathcal{G} \equiv_{\mathcal{L}^2(\#)} \mathcal{H}$$

• For k > 2 and simple graphs

$$\mathcal{G} \simeq^{\mathbf{J}_{\mathbf{k}}} \mathcal{H} \implies \mathcal{G} \equiv_{\mathcal{L}^{k}(\#)} \mathcal{H}$$

• Treat ${\cal C}$ as a category and define ${\cal A}\simeq^{\cal C}_{\bf nat}{\cal B}$ to be witnessed by natural isomorphisms

$$Hom(-,\mathcal{A})\cong Hom(-,\mathcal{B})$$

- Can we find a game for which it is sensible to talk about the Hom-complex Hom(C_kA, B) for some C_k in the same way we talk about hom(T_kA, B) in the context of the existential k-pebble game?
- Can we find a Lovasz-type result based on Hom complexes? (e.g. proving $\simeq^{\mathcal{C}}$ equivalent to $\equiv_{\mathcal{L}}$ for some logic)