
Extending FO logic with topology
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Part 1: Why topology?
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The original CFI construction is a pair of transforms X−, X̃− sending
3-regular graphs to 3-regular graphs.

For any k and G of large enough tree width, we have

XG ≡Lk(#) X̃G but XG 6∼= X̃G

Rank and linear algebraic quantifiers distinguish them

XG 6≡Lk(LA) X̃G
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Vertices in CFI construction

A vertex in G −→ “Gadget” in XG
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Edges in CFI construction

An edge a in G

Untwisted edge in XG Twisted edge in X̃G

X̃G contains exactly one “twisted” edge.
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Why topology?

G as triangulation of torus

2-regular CFI graphs distinguished by connectedness

Vertex in G −→ Vertex in XG

Grohe implies Lk(#) captures isom on any class of graphs of bounded
genus.
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Question 1 Can we devise a (tractably computable) topology-based
equivalence relation ≡T which distinguishes XG and X̃G?

Question 2 Is there a categorical semantics for any such equivalence
relation?
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Part 2: Topology quantifiers
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Interpretation in logic

ΨT (x,y) a type T interpretation is a collection of L[σ] formulae in x and
y which defines for any structure A and any asgmt a to variable x an

object of type T which depends only on the truth values of the formulas in
ΨT in A,a as y varies over An

Ó Conghaile Extending FO logic with topology September 2021 14 / 31



Examples

ΨSet = ψ(x,y)
interprets a set for any A,a
Ψτ = 〈ψR(x, y1, . . . ynR)〉R∈τ
interprets a τ -structure for any A,a
ΨFMod = 〈ψMi(x, y1, . . . y2n)〉i∈[r]
interprets a tuple of r n× n 0-1 matrices over F for any A,a
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Quantifiers

A type T quantifier QTK for L[σ] is described by an isom-closed class K of
T objects and binds the y vairables of ΨT (x,y) an L[σ]-interpretation of

type T .

QTKy.ΨT (x,y) is true on A,a if and only is the corresponding T object is
in K
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Examples

ΨSet = ψ(x,y)
quantifiers QSet

K are 1 counting quantifiers ∃≤t

Ψτ = 〈ψR(x, y1, . . . ynR)〉R∈τ
quantifiers QτK are generalized quantifiers of τ structures

ΨFMod = 〈ψMi(x, y1, . . . y2n)〉i∈[r]
quantifiers QFMod

K are linear-algebraic quantifiers over F

1arbitrary conjunctions and disjunctions of
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Interpreting simplicial complexes

Abstract simplicial complex ∆ = (V, S) a pair of vertex set V and
simplex set S, a downward closed subset of 2V

Dimension of a simplex s ∈ S is |s| − 1.

ΨSimpn = 〈ψm(x, y1, . . . ym)〉m∈[n+1]

Interpretation of n-dimensional abstract simplicial complex from a
σ-structure.
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Topological quantifiers

QSimpn
K

Which classes K should be allowed?

∼=-closed? As hard as GI
'h-closed? ??
'H -closed? Tractable
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An attempt at distinguishing CFI graphs

CFI graphs Interpreted complexes

Sadly this interpretation did not create complexes for XG and X̃G with
different homology!
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Open questions

Can these complexes be distinguished by some other tractable
topological property?

Can we express the homology-based quantifiers QSimpn
K in Lk(#)?

Can we interpret another complex on XG , X̃G which does distinguish
them topologically?
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Part 3: A Lovasz-type equivalence with topology
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Lovasz-type results

A ≡L B ⇐⇒ ∀C ∈ F |hom(C,A)| = |hom(C,B)|

Some known examples
L F
∼= Rf (σ)
Lk(#) Wk

Ln(#) Tn
. . . and many more thanks to Tomas, Luca and Anuj!
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Lovasz-type results

A ≡L B ⇐⇒ ∀C ∈ F hom(C,A)
?' hom(C,B)

Can we compare homsets in any way other than counting?

Yes! With topology . . .
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Homomorphism complexes

For A,B σ-structures, the hom-complex Hom(A,B) is a simplicial
complex2 with vertices the homomorphisms f : A → B where {f1, . . . fm}

form a simplex if for all a1, . . . , an ∈ A and all R ∈ σ,

(a1, . . . , an) ∈ RA =⇒
∏
i

{fj(ai)}j∈[m] ⊆ RB

2other mostly equivalent notions exist
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Example
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Figure: Hom(C4,K3)

Ó Conghaile Extending FO logic with topology September 2021 26 / 31



Further examples

See board!

Hom(K2, C6) ∼= Hom(K2, C3 ∪ C3)
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Hom-complexes and Lovász-type result

The 1-skeleton of the hom-complex can be thought of as a simple
undirected graph where the 0-dimensional cells are its vertices and the
1-dimensional cells are its edges.

Theorem (Kozlov)

For every two graphs G and H, the isomorphism type of Hom(G,H) is
determined by the isomorphism type of Hom1(G,H).
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Hom-complexes and Lovász-type result

Question.

Suppose A and B are finite (undirected) graphs such that

A 'C B ⇐⇒ ∀F ∈ C, Hom1(F,A) ∼= Hom1(F,B).

For which class C the relation 'C is isomorphism ∼=?

While we ask these questions for isomorphism-equivalence and finite
undirected graphs, we would like to generalise them to
homotopy-equivalence and general finite σ-structures.
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Preliminary results

For finite, simple, undirected graphs

G 'J2 H =⇒ G ≡L2(#) H

However . . .

For graphs with loops

G 'J2 H 6=⇒ G ≡L2(#) H

For k > 2 and simple graphs

G 'Jk H 6=⇒ G ≡Lk(#) H
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Open questions and new directions

Treat C as a category and define A 'Cnat B to be witnessed by natural
isomorphisms

Hom(−,A) ∼= Hom(−,B)

Can we find a game for which it is sensible to talk about the
Hom-complex Hom(CkA,B) for some Ck in the same way we talk
about hom(TkA,B) in the context of the existential k-pebble game?

Can we find a Lovasz-type result based on Hom complexes? (e.g.
proving 'C equivalent to ≡L for some logic)
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